Reaction between 5-benzylidene-2,2-dimethyl-1,3-dioxane-4,6-dione and *tert*-butyl isocyanide in the presence of ethane-1,2-diol or catechol Issa Yavari^{a,b*}, Hasan Zare^b and Bita Mohtat^b

^aChemistry Department, Tarbiat Modarres University, PO Box 14115-175, Tehran, Iran ^bChemistry Department, Science & Research Campus, Islamic Azad University, Ponak, Tehran, Iran

tert-Butyl isocyanide undergoes a smooth reaction with 5-benzylidene-2,2-dimethyl-1,3-dioxane-4,6-diones (benzylidene Meldrum's acids) in the presence of ethane-1,2-diol or catechol to produce functionalised *N-tert*-butyl-2-(5,7-dioxo-1,4-dioxepane-6-yl)-2-aryl-ethanamides or bis-(2-hydroxyphenyl) 2-[2-(*tert*-butylamino)-1-aryl-2-oxoethyl]-malonates in good yields.

Keywords: benzylidene Meldrum's acid, ethane-1,2-diol, catechol, three-component reaction

As versatile reagents and important intermediates, Meldrum's acid (isopropylidene malonate) and its derivatives have been widely used in organic synthesis.^{1,2} In the context of our recent studies³⁻⁸ on the reactivity of isopropylidene Meldrum's acid, we studied the reaction between 5-benzylidene-2,2-dimetyl-1,3-dioxane-4,6-dione (1, benzylidene Meldrum's acid) and *tert*-butyl isocyanide (2) in the presence of bidentate proton sources, such as ethane-1,2-diol (3) or catechol (4). This reaction led to highly functionalised *N-tert*-butyl-2-(5,7-dioxo-1,4-dioxepane-6-yl)-2-arylethanamides **5** and bis-(2-hydroxyphenyl) 2-[2-(*tert*-butylamino)-1-aryl-2-oxoethyl]malonates **6** in good yields (Scheme 1).

The reaction of *tert*-butyl isocyanide with 1 in the presence of 3 or 4 proceeded at room temperature in CH_2Cl_2 and was complete within 24 h. The ¹H NMR spectra of the crude products clearly showed the formation of 5 or 6⁹ (Scheme 1).

The structures of compounds **5** and **6** were deduced from their elemental analyses and IR, ¹H NMR and ¹³C NMR data. The IR spectrum of **5a** clearly showed N–H stretching band at 3270 cm⁻¹. The ¹H NMR spectrum of **5a** exhibited a sharp singlet for the *tert*-butyl ($\delta = 1.28$ ppm) along with two doublets ($\delta = 3.83$ and 4.42 ppm; ³J_{HH} = 4.5 Hz) for the methine protons. The CH₂–CH₂ moiety exhibited a complex multiplete at $\delta = 4.15$ –4.19 ppm. The N–H and aromatic protons appear at $\delta = 5.36$ and 7.20–7.40 ppm, respectively. The ¹³C NMR spectrum of **5a** showed 15 distinct resonances in agreement with proposed structure. Partial assignment of these resonances is given in the Experimental section. The ¹H NMR and ¹³C NMR spectra of **5b–5d** are similar to those of **5a** except for the aryl residues which exhibited characteristic signals with appropriate chemical shifts (see Experimental section).

The IR spectrum of **6a** showed O–H and N–H bands at 3500, 3270 cm⁻¹. The ¹H NMR spectrum of **6a** exhibited sharp resonances in the aliphatic region arising from *tert*-butyl ($\delta = 1.29$ ppm) and methine ($\delta = 3.80$ and 5.76 ppm) protons.

On the basis of well established chemistry of isocyanides¹⁰⁻¹³ it is reasonable to assume that compound **5** result from an initial [4 + 1] cycloaddition reaction of the electron deficient hetrodiene moiety of **1** with *tert*-butyl isocyanide, producing an iminolactone intermediate **7**, which losses acetone to produce ketene **8**. The ketene **8** can be trapped by ethane-1,2-diol to give **5**. Reaction of **1** with **2** in the presence of catechol at room temperature led to **6** (Scheme 2).

In conclusion, the reaction of *tert*-butyl isocyanide with 5benzylidene-2,2-dimetyl-1,3-dioxane-4,6-dione in the presence of ethane-1,2-diol or catechol produce functionalised *N-tert*butyl-2-(5,7-dioxo-1,4-dioxepane-6-yl)-2-arylethanamides or bis-(2-hydroxyphenyl) 2-[2-(*tert*-butylamino)-1-aryl-2oxoethyl]malonates of potential synthetic interest. The one-

* Correspondent. E-mail: yavarisa@modares.ac.ir; isayavar@yahoo.com

Scheme 2

pot nature of the present procedure makes it an acceptable method for preparation of target molecules with variable functionalities.

Experimental

General

Compounds 2–4 were obtained from Fluka and were used without further purification. M.p.: Electrothermal-9100 apparatus. IR Spectra: Shimadzu IR-460 spectrometer. ¹H NMR and ¹³C NMR spectra: Bruker DRX-300 AVANCE instrument; in CDCl₃ at 300 and 75 MHz, respectively; δ in ppm, *J* in Hz. EI-MS (70 eV): Finnigan-MAT-8430 mass spectrometer, in *m/z*. Elemental analyses (C, H, N) were performed with a Heraeus CHN-O-Rapid analyser.

General procedure for the preparation of 5

To a stirred solution of 1 (2 mmol) and 3 (2 mmol) in 10 ml of CH₂Cl₂ was added dropwise a mixture of 2 (2 mmol) in 2 ml of CH₂Cl₂ at 0°C over 5 min. The reaction was allowed to warm to room temperature and stirred for 3 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (SiO₂; hexane/AcOEt 4:1) to afford the pure title compounds.

N-tert-butyl-2-(5,7-dioxo-1,4-dioxepane-6-yl)-2-phenyl-ethanamide (5a): Pale yellow powder, yield: 0.51 g (80%). M.p. 57–59°C. IR (KBr): 3270 (N–H), 1727, 1714, 1650, 1615 (C=O). ¹H NMR: δ = 1.28 (9 H, s, CMe₃), 3.83 (1 H, d, ³J = 4.5, CH), 4.15–4.19 (4 H, m,OCH₂CH₂O), 4.42 (1 H, d, ³J = 4.5, CH), 5.36 (1 H, s, N–H), 7.30–7.35 (5 H, m, C₆H₅). ¹³C NMR: δ = 28.8 (CMe₃), 44.7, 52.7 (2 CH), 56.8 (CMe₃), 66.6, 67.6 (2OCH₂), 128.0, 128.3, 128.5, 129.0, 129.2 (5 CH), 136.9 (C), 165.9, 168.2, 169.3 (3 C=O). EI-MS: 319 (M⁺, 7), 275 (18), 261 (78), 260 (46), 245 (84), 228 (82), 129 (80), 101 (47), 91 (100), 74 (47), 59 (31), 58 (26), 44 (34). Anal. Calcd for C₁₇H₂₁NO₅ (319.35): C, 63.93; H, 6.63; N, 4.39%; found: C, 63.62; H, 6.59; N, 4.36%. *N*-tert-butyl-2-(5, 7-dioxo-1, 4-dioxepane-6-yl)-2-(4-

N-tert-butyl-2-(5, 7-dioxo-1, 4-dioxepane-6-yl)-2-(4dimethylaminophenyl)-ethanamide (**5b**): Yellow powder, yield: 0.56 g (78%). M.p. 79–81°C. IR (KBr): 3270 (N–H), 1727, 1714, 1650, 1615 (C=O). ¹H NMR: δ = 1.28 (9 H, *s*, CMe₃), 2.97 (6 H, *s*, 2 NMe), 3.83 (1 H, d, ³J = 4.7, CH), 4.14–4.18 (4 H, *m*,°CH₂CH₂O), 4.42 (1 H, d, ³J = 4.7, CH), 5.37 (1 H, *s*, N–H), 6.62–6.69 (4 H, *m*, C₆H₄). ¹³C NMR: δ = 28.8 (CMe₃), 40.8 (2 NMe), 44.7, 52.7 (2 CH), 55.6 (CMe₃), 66.6, 67.6 (2 CH₂O), 112.4, 113.2, 123.9, 126.5 (4 CH), 128.9, 129.2 (2 C), 167.4, 168.2, 171.2 (3 C=O). EI-MS: 362 (M⁺, 9), 275 (18), 261 (78), 260 (46), 245 (84), 228 (82), 129 (80), 101 (47), 91 (100), 74 (47), 59 (31), 58 (26), 44 (34). Anal. Calcd for C₁₉H₂₆N₂O₅ (362.42): C, 62.96; H, 7.23; N, 7.73%; found: C, 62.88; H, 7.31; N, 7.79%.

N-tert-butyl-2-(5,7-dioxo-1,4-dioxepane-6-yl)-2-(4-nitrophenyl)ethanamide (5c): Yellow powder, yield: 0.55 g (76%). M.p. 93–95°C. IR (KBr): 3270 (N–H), 1727, 1714, 1650, 1615 (C=O). ¹H NMR: $\delta = 1.28$ (9 H, s, CMe₃), 3.83 (1 H, d, ³J = 4.6, CH), 4.12–4.17 (4 H, m, CH₂CH₂O), 4.42 (1 H, d, ³J = 4.6, CH), 5.52 (1 H, s, N–H), 8.06–8.30 (4 H, m, C₆H₄). ¹³C NMR: $\delta = 28.8$ (CMe₃), 50.9, 52.5 (2 CH), 56.2 (CMe₃), 67.51, 67.92 (2 CH₂O), 124.3, 129.0, 129.6, 130.2 (4 CH), 146.9, 147.7 (2 C), 167.2, 168.3, 169.5 (3 C=O). EI-MS: 364 (M⁺, 6), 318 (23), 303 (45), 302 (32), 288 (51), 228 (49), 134 (100), 74 (50), 59 (42), 58 (33), 44 (18). Anal. Calcd for C₁₇H₂₀N₂O₇ (364.35): C, 56.04; H, 5.53; N, 7.69%; found: C, 56.12; H, 5.59; N, 7.75%.

N-tert-butyl-2-(5,7-dioxo-1,4-dioxepane-6-yl)-2-(4–Chlorophenyl)ethanamide (**5d**): Yellow powder, yield: 0.55 g (78%). M.p. 76–78°C. IR (KBr): 3270 (N–H), 1727, 1714, 1650, 1615 (C=O). ¹H NMR: $\delta = 1.28$ (9 H, s, CMe₃), 3.83 (1 H, d, ³J = 4.5, CH), 4.14–4.18 (4 H, m, CH₂CH₂O), 4.42 (1 H, d, ³J = 4.5, CH), 5.45 (1 H, s, N–H), 7.29–7.33 (4 H, m, C₆H₄). ¹³C NMR: $\delta = 28.8$ (CMe₃), 51.8, 53.2 (2 CH), 55.2 (CMe₃), 61.2, 62.8 (2 CH₂O), 128.5, 128.6, 128.9, 129.2 (4 CH), 131.4, 136.7 (2 C), 168.2, 168.8, 170.4 (3 C=O). EI-MS: 354 (M⁺, 7), 320 (45), 305 (48), 304 (27), 290 (62), 228 (53), 136 (100), 101 (78), 74 (39), 59 (33), 58 (29), 46 (26), 44 (22). Anal. Calcd for C₁₇H₂₀NO₅Cl (353.80): C, 57.71; H, 5.70; N, 3.96%; found: C, 57.82; H, 5.66; N, 4.03%.

General procedure for the preparation of 6

To a stirred solution of 1 (2 mmol) and 4 (4 mmol) in 10 ml of CH_2Cl_2 was added dropwise a mixture of 2 (2 mmol) in 2 ml of CH_2Cl_2 at 0°C over 5 min. The reaction was allowed to warm to room temperature and stirred for 3 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (SiO₂; hexane/AcOEt 4:1) to afford the pure title compounds.

Bis-(2-hydroxyphenyl) 2-[2-(tert-butylamino)-1-phenyl-2-oxoethyl]-malonate (**6a**): Yellow powder, yield: 0.68 g (75%). M.p. 47–49°C. IR (KBr): 3500, 3350 (O–H) 3270 (N–H), 1727, 1714, 1650, 1615 (C=O). ¹H NMR: δ = 1.29 (9 H, *s*, C*M*e₃), 3.80 (1 H, *d*, ³*J* = 4.8, CH), 4.33 (1 H, *d*, ³*J* = 4.8, CH), 5.76 (1 H, *s*, N–H), 6.73–7.39 (13 H, *m*, 2 C₆H₄, C₆H₅), 8.70 (2 H, *s*, 2 O–H). ¹³C NMR: δ = 28.8 (C*M*e₃), 44.5, 52.7 (2 CH), 55.8 (CMe₃), 116.2, 117.5, 118.1, 120.2, 120.5, 121.0, 122.8, 123.1, 127.8, 128.0, 128.2, 128.4, 128.7, 129.8, 138.2, 138.4, 144.7, 149.1 (3 C₆H₄), 167.6, 168.7, 173.8 (3 C=O). EI-MS: 477 (M⁺, 6), 433 (23), 419 (17), 418 (31), 386 (45), 369 (35), 108 (100), 91 (39), 74 (48), 59 (24), 58 (30), 44 (18). Anal. Calcd for C₂₇H₂₇NO₇(477.50): C, 67.91; H, 5.70; N, 2.93%; found: C, 67.82; H, 5.77; N, 2.97%.

Bis-(2-hydroxyphenyl) 2-[2-(tert-butylamino)-1-(4-dimethylaminophenyl)-2-oxoethyl]-malonate (**6b**): Yellow powder, yield: 0.86 g (85%). M.p. 84–86°C. IR (KBr): 3500, 3350 (O–H) 3270 (N–H), 1727, 1714, 1650, 1615 (C=O). ¹H NMR: $\delta = 1.28$ (9 H, s, CMe_3), 3.17 (6 H, s, 2 Me) 3.83 (1 H, d, ³J = 4.7, CH), 4.34 (1 H, d, ³J = 4.7, CH), 5.52 (1 H, s, N–H), 6.66–7.50 (12 H, m, 3 C₆H₄), 8.81 (2 H, s, 2 O–H). ¹³C NMR: $\delta = 28.8$ (CMe₃), 40.7, 40.7 (2 Me), 45.4, 52.6 (2 CH), 55.9 (CMe₃), 113.4, 113.6, 118.1, 118.3, 120.2, 121.2, 122.6, 122.8, 130.1, 138.0, 149.0 (3 C_6H_4) 165.9, 168.8, 169.3 (3 C=O). EI-MS: 520 (M⁺, 4), 476 (61), 462 (53), 461 (32), 381 (49), 134 (43), 108 (100), 101 (17), 74 (37), 59 (28), 58 (23), 44 (17). Anal. Calcd for $C_{29}H_{32}N_2O_7$ (520.57): C, 66.91; H, 6.20; N, 5.38%; found: C, 67.11; H, 6.29; N, 5.26%.

Bis-(2-hydroxyphenyl) 2-[2-(tert-butylamino)-1-(4-chlorophenyl)-2-oxoethyl]-malonate (**6d**): Yellow powder, yield: 0.70 g (68%). M.p. 63-65°C. IR (KBr): 3500, 3350 (O-H) 3270 (N-H), 1727, 1714, 1650, 1615 (C=O). ¹H NMR: $\delta = 1.27$ (9 H, s, CMe₃), 3.83 (1 H, d, ³J = 4.6, CH), 4.32 (1 H, d, ³J = 4.6, CH), 5.52 (1 H, s, N-H), 6.56-7.44 (12 H, m, 3 C₆H₄), 8.83 (2 H, s, 2 O-H). ¹³C NMR: $\delta = 28.8$ (CMe₃), 47.4, 52.1 (2 CH), 55.2 (CMe₃), 119.7, 120.1, 121.6, 127.4, 130.1, 130.5, 131.2, 133.2, 137.4, 138.6, 146.1, 149.7 (3 C₆H₄) 170.2, 170.3, 171.4 (3 C=O). El-MS: 512 (M⁺, 4), 468 (35), 454 (44), 453 (52), 387 (38), 279 (43), 125 (51), 108 (100), 74 (35), 59 (41), 58 (21), 44 (27). Anal. Calcd for $C_{27}H_{26}NO_7CI$ (511.95): C, 63.34; H, 5.12; N, 2.74%; found: C, 63.56; H, 5.19; N, 2.83%.

Received 3 February 2007; accepted 8 March 2007 Paper 07/4451 doi: 10.3184/030823407X198401

References

- 1 H. McNab, Chem. Soc. Rev., 1978, 7, 345.
- 2 B.C. Chen, *Heterocycles*, 1991, **32**, 529.
- 3 I. Yavari and A. Habibi, Phosphorus, Sulfur, Silicon, 2003, 178, 1733.
- 4 I. Yavari, M. Anari-Abbasinejad, A. Alizadeh, and A. Habibi, *Phosphorus, Sulfur, Silicon*, 2002, **177**, 2523.
- 5 I. Yavari and A. Habibi, Polish J. Chem., 2004, 78, 71.
- 6 I. Yavari and A. Habibi, Synthesis, 2004, 989.
- 7 I. Yavari, A. Habibi, and M.R. Hosseini-Tabatabaei, *Monatsh. Chem.*, 2003, **134**, 1651.
- 8 I. Yavari, M.R. Hosseini-Tabatabaei, and A. Habibi, *Synthetic Commun.*, 2003, **33**, 2709.
- 9 When the reaction was carried out in the presence of 1 equivalent of 5, the major product was 6 and no bycyclic product corresponding to 4 was observed in the reaction mixture.
- 10 I. Ugi, Angew. Chem. Int. Ed. Eng., 1982, 21, 810.
- 11 A. Dömling, Chem. Rev., 2006, 106, 17.
- 12 A. Dömling and I. Ugi, Angew. Chem. Int. Ed. Eng., 2000, 39, 3169.
- 13 S. Marcaccini and T. Torroba, Org. Prep. Preced. Int., 1993, 25, 141.